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Abstract

Natural convection of gas (Pr = 0.7) between two horizontal coaxial cylinders with uniform internal heat generation
is numerically investigated. Such a problem plays an important role in the analysis of lasers in which a similar circuit of
a heat-conducting path is used. It has been found that the behavior of the system critically depends on three parameters
including the inverse relative gap width r(=diameter of the inner cylinder/gap width), the Rayleigh number Ra and the
modified Rayleigh number RaT which describes heat generation. In the case RaT = 0 our results coincide with the
known ones. It has been established that in such a system there exist two types of fluid flow for low Rayleigh numbers
with different vortex structure. Optimization of the corresponding coaxial laser system has been analyzed.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The main problem associated with laser and dis-
charge stability is the increase of translation temperature
with the power increase. The increase in temperature
leads to acceleration of relaxation processes, nonequilib-
rium decrease, contraction and breakdown of genera-
tion. The convective flow systems are frequently used
to achieve a high power output, but they are bulky
and difficult in operation. The search of a new scheme
of the organization of the discharge is, therefore, con-
stantly under way. In recent years, coaxial waveguides
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have been extensively used [1,2]. Advantages of such sys-
tem are obvious. The axis of the cylinder, where the tem-
perature is maximal, can be effectively cooled. Certainly,
there are additional problems related to radiation char-
acteristics of such a laser, but these questions will not be
considered in the present paper. The primary attention
will be focused upon a problem of the heat transfer. In
fact, convection in a system of coaxial cylinders at fixed
temperatures of cylinders leads to approximately double
increase of a flow, compared with the flow determined
only by the heat conductivity [3–5].

The purpose of the present work is to investigate a
stationary convective flow in the nonequilibrium annu-
lus between two coaxial cylinders. The simplest model
of uniform internal heat generation is considered which
enables one to simulate the real energy flow. Tempera-
tures of the cylinders are fixed, but can be different
and, therefore, in the absence of the energy generation
the problem will be reduced to the well-known one [3–5].
ed.
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Nomenclature

D diameter of inner cylinder
g acceleration of gravity
L gap width of the annulus, Ro � Ri

Nui, Nuo local Nusselt numbers at the inner and out-
er cylinders, respectively

Pr Prandtl number, m/v
Ro, Ri radii of the outer and inner cylinders,

respectively
Ra Rayleigh number based on the gap width,

qgbL3(Ti � To)/la
RaT modified Rayleigh number based on the gap

width, qgbL3Toq/la
r dimensionless radial coordinate
Ti, To temperatures at the inner and outer cylin-

ders, respectively
t dimensionless time
U, V velocity components in the radial and angu-

lar directions, respectively
u, v dimensionless velocity components in the ra-

dial and angular directions, respectively
FR, Fh the components of a gravity in the radial

and angular directions, respectively, referred
to the unit volume

c thermal capacity referred to a mass unit
P pressure
Q internal heat generation
q dimensionless internal heat generation

Greek symbols

a coefficient of thermal expansion
u dimensionless temperature
v thermal diffusivity
m kinematic viscosity
q mean density
r ratio of the inner cylinder diameter to gap

width, Di/L
h angular coordinate
w dimensionless streamfunction
x dimensionless vorticity
l dynamic viscosity
b thermal volumetric expansion coefficient
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Convection in systems with heat generation has been
studied for a flat layer with uniform source [6] and tak-
ing into account energy pumping into vibrational de-
grees of freedom [7]. Problems associated with the
powerful energy generation in nuclear power engineer-
ing have been considered as well [8]. However, the prob-
lem considered in this paper has features related to the
geometry of the system (by contrast to a flat layer, the
mode without movement is impossible here) and to
capacities (by contrast to a problem of huge capacities
of energy generation, in the problem under consider-
ation the temperature mode on the walls can be adjusted
as Ra and RaT numbers are independent). Moreover, the
geometry of coaxial cylinders has some specific features,
and the optimization parameter is the temperature field,
and not a Nusselt number (its integrated value in the
present case is fixed).
Fig. 1. Geometrical model of the coaxial laser. Ro—radius of
the outer cylinder, Ri—radius of the internal cylinder, To—
temperature on a wall of outer cylinder, Ti—temperature on a
wall of the internal cylinder.
2. Formulation of the problem

The configuration to be studied and the coordinate
system are shown in Fig. 1. The fluid is contained be-
tween two coaxial cylinders of radii Ri and Ro, which
are held at temperatures To and Ti. The uniform heat
generation Q does not depend on coordinates. Density
change in the fluid is neglected everywhere except
in the buoyancy, and all other physical properties of
the fluid are assumed to be constant (Boussinesq
approximation).

We consider a two-dimensional problem, and use the
cylindrical coordinates (R,h), where the angular coordi-
nate h is measured counter-clockwise with respect to the
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upward vertical axis which contains the centre of the cyl-
inders (Fig. 1).

The dimensional governing equations are
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where U and V are the radial and angular velocities,
respectively, P is the pressure, T is the temperature, FR

and Fh are the components of a gravity referred to unit
of volume, q is a density, l is the dynamic viscosity, c is
the thermal capacity referred to a mass unit, k is the
thermal conductivity.

It is necessary to note that the possibility of applica-
tion of Boussinesq approximation has been theoretically
examined in general case [9,10]. A comparative numeri-
cal analysis for cavity for two-dimensional case has also
been carried out [11]. The sense of these results comes to
low rate of movement and in the approximation of low
rate restrict the considering Rayleigh numbers. But the
calculations shows that the Rayleigh numbers at which
Boussinesq approximation does not work any more,
have a great value. Numerical estimations show that it
is necessary to use a full system of hydrodynamic equa-
tions in case of RaT P 3 · 108 [11].

The temperature constituent of the body-force terms
can be written as functions of the temperature difference:

F R ¼ gqbðT � T oÞ cos h; ð5Þ
F h ¼ gqbðT � T oÞ sin h; ð6Þ

where T is the temperature of a fluid in a cavity between
cylinders and b is the thermal volume expansion
coefficient.

The stream function W can be introduced which sat-
isfies the continuity equation by setting:

U ¼ R�1oW=oh; V ¼ �oW=oR. ð7Þ
The dimensionless parameters are
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where a = k/qc is the thermal diffusivity and L =
Ro � Ri.

The resulting equations can be simplified by intro-
ducing the vorticity x, defined as

x ¼ �r2w; ð9Þ
where
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The initial system (1)–(4) is reduced to dimensionless
governing system:
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where Pr = lc/k is the Prandtl number and RaT =
qgbL3Toq/la is the modified Rayleigh number.

Temperature and velocity distribution into the annu-
lus between coaxial cylinders are determined by the Pra-
ndtl number, Rayleigh number, boundary conditions
and geometrical parameters of the system.

In the present problem the boundary conditions cor-
respond to two impermeable isothermal walls of cylin-
ders with constant radii and one vertical symmetry
axis at h = 0� and 180�. The stream function is equal
to zero on all boundaries along both walls as well as
along the symmetry axis as there are no fluxes through
the walls and through the plane. The angular derivative
temperatures and vorticity on a line of symmetry
disappear.

x ¼ �o2w=or2. ð14Þ
The boundary conditions on the symmetry plane
become

w ¼ x ¼ ou=oh ¼ 0 ð15Þ

while on the inner and outer cylinders they can be writ-
ten as

w ¼ u ¼ v ¼ 0; x ¼ �o2w=or2;

ujr¼ri
¼ Ra=RaT; ujr¼ro ¼ 0; ð16Þ

where Ra = qgbL3(Ti � To)/la.
We have obtained q � 102 and RaT � 2 · 104 for

standard parameters of discharge Q � 0.5 W/sm3,



Fig. 2. Critical surface RaT (Ra,r).
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a � 3 sm2/s, L � 2 sm, l � 2 sm2/s [12]. It is important
to notice that the modified Rayleigh number depends
on typical size of system as L5 and that is why RaT
can vary in sufficiently wide range. However, as one
can see from the estimation presented above, the param-
eter RaT in the discharge is sizable and so the convection
plays a considerable role.

It is possible to use the standard normalization with
the parameter Ti � To [3–5]. In this case in Eq. (12)
the parameter RaT will be replaced by Ra. In the right
hand side of Eq. (13) the unity will be replaced by
RaT/Ra, and in Eq. (16) for u one obtains the standard
result: ujr=ri

= 1, ujr=ro
= 0. At both ways of settings re-

sults completely coincide. The only exception corre-
sponds to the points where Ra = 0 and RaT = 0
because the ratio Ra/RaT is not defined and application
appropriate of settings is impossible.

In the absence of convection Eq. (13) can be written
as

r2u ¼ �1; ð17Þ

where the boundary conditions are given by Eq. (16).
Eq. (17) has the following solution:
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where r ¼ 2ri
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2
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The value of r = rmax which corresponds to the max-
imum temperature can be determined from the equation
ou/or = 0. We obtain
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It should be noted that if ri < rmax < ro, the profile of the
temperature is nonmonotonic.

The transition to a monotonous profile corresponds
to the values rmax = ri and rmax = ro. At rmax = ri one ob-
tains from (19)
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The analysis of (20) and (21) shows, that at the absence
of convection the nonmonotonic structure arises only
for Ra/RaT in a range from �0.5 up to 0.5 and faint de-
pends on r.

Now, setting some initial distributions of tempera-
ture and the stream function, using Eqs. (11)–(13) and
boundary conditions (15) and (16) it is possible to follow
the evolution of this initial distribution, and, in particu-
lar, to obtain an expression for a limiting stationary
mode if it exists. In the numerical solution of our prob-
lem we employ the method of final differences. Finite-
difference scheme is standard and the Poisson equation
(11) is solved by the method of variable directions, with
the chase method used for every direction.
3. Results and discussion

The surface RaT (Ra,r), which separates the region
with a two-dimensional convection from the one with
the three-dimensional modes is shown in Fig. 2. This
surface represents a generalization of the existing results
for the dependence Ra(r) in the absence of heat genera-
tion (RaT = 0). Taking into account that the tempera-
ture difference on the inner and outer cylinders can
vary both ways, negative values of Ra corresponding
to the case Ti < To have also been taken into
consideration.

The critical surface becomes asymmetrical with a
change of sign of Ra and with a reduction of r. This
behavior is related to an increase of the difference be-
tween the areas of the surfaces of the two cylinders with
the decreasing r.

In Fig. 3 the dependence RaT (Ra) for the fixed value
r = 2 is plotted.

Four areas have been distinguished. I and II areas
correspond to a two-dimensional convection, while the
III and IV areas correspond to a three-dimensional con-
vection. In the first area (I) convection is accompanied
by the formation of two eddies and the temperature gra-
dient varies. However, inside each eddy the gradient
does not change sign, while in the second area (II) there
is only one eddy and the temperature gradient has a con-
stant sign.

For comparison the dotted lines separating a range of
Ra/RaT values between �0.63 and 0.49 are shown
in Fig. 3. In this case, in the absence of convection the



Fig. 3. The dependence Ra (RaT) for r = 2.

4522 N.A. Roschina et al. / International Journal of Heat and Mass Transfer 48 (2005) 4518–4525
nonmonotonic temperature profile is observed. These
values are calculated using Eqs. (20) and (21). One can
readily see that the convection reconstructs the temper-
ature distribution to a very large extent al though the
existence of an inhomogeneous distribution at small val-
ues of the parameter Ra/RaT is preserved.

A typical picture of the isotherms and streamlines for
the area I is presented in Fig. 4a, and for the second area
it is presented in Fig. 4b.

There is only one eddy in the absence of the heat gen-
eration in a two-dimensional mode according to the
direction of the temperature gradient. The temperature
gradient has a unique sign inside this eddy. The same
behavior is found in another problem where heat gener-
ation is taken into account although the presence
of convection results in a number of changes in the
inhomogeneous temperature distribution.

One notes that the eddies are disintegrated in the
third (III) and the fourth (IV) areas. This corresponds
to a transition into a new regime which has not been
studied in detail in this paper. The corresponding solu-
Fig. 4. Isotherms and streamlines for r = 2: (a) Ra = 1 · 102, RaT = 3
on Fig. 3).
tion, however, is well-known for the case of RaT = 0.
One finds different two- and three-dimensional struc-
tures in this case.

Now let us consider the same system for the pros-
pects of laser construction in the case of equal tempera-
tures at both boundaries (Ra = 0).

We first compare results without convection. The
equation $2u = �1 can readily be solved with the
boundary conditions ujri ;ro ¼ 0:
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In the limit r ! 0 one obtains the value 0.25 at the
maximum which corresponds to a solution of a similar
problem with heat generation for a cylinder where
u ¼ ðr2o � r2Þ=4. By contrast to the cylindrical geometry,
the coaxial geometry enables one to reduce the maximal
temperature in the system by a factor of two. The max-
imal temperature steeply decreases with increasing r and
only marginally differs from the limiting value 0.125 for
r P 1. We consider now the same problem taking con-
vection into account.

Streamlines and isotherms for r = 2, ri = 1, ro = 2,
RaT = 3 · 104 are shown in Fig. 5.

One can readily see from the picture, there the angu-
lar dependence of the temperature is strongly inhomoge-
neous. The maximal value of the temperature exceeds
the appropriate maximum temperature for the case
without convective. In Fig. 6 one finds the dependence
of the maximum possible temperature in the system on
the modified Rayleigh number at different values of r.
The maximal temperature value grows with the increas-
ing RaT for the coaxial cylinders system.

The reason for this is the existence of the two eddies.
Indeed, if one considers the top area of the system
(Fig. 7) and compare the heat flow with and without
convection, one can readily see that in the case of con-
· 104 (area I on Fig. 3); (b) Ra = 2 · 103, RaT = 5 · 103 (area II



Fig. 7. Convective flows at the top poi

Fig. 6. The maximal temperature as a function of RaT for
different values of r.

Fig. 5. Isotherms and streamlines for r = 2, RaT = 3 · 104.
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vection there exists the additional influx of energy into
the system from the side areas because incoming streams
are heated up more than outgoing ones. This also leads
to an increase of the maximal temperature. The temper-
ature distribution as a function of angle can be charac-
terized by the angular heterogeneity of the thermal
flow at the wall. If one splits the surface into two parts,
for the r = 2 at RaT = 3.5 · 104, that corresponds to
Fig. 5, Nusselt numbers areZ p=2

0

r
ou
or

����
r¼ro

¼ 1.52;

Z p

p=2
r
ou
or

����
r¼ro
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Z p=2

0

r
ou
or

����
r¼ri

¼ 0.92;

Z p
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����
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Certainly, the total flux is preserved. It depends only on
r and is equal to p(1 + r)/2 for the semi-circumference.

The problem which accounts for the volumetric heat
generation in the cylinder is solved in a similar way using
the Cartesian coordinates. In Fig. 8 one finds typical iso-
therms and streamlines while the dependence of the
maximal temperature on RaT is shown in Fig. 6. For
the cylinder geometry the temperature decreases with
the increasing heat generation and at some value of
RaT it becomes even smaller than in the case of two
coaxial cylinders.

However, it is necessary to recognize, that it is impos-
sible to carry out the direct comparison of the results for
the two geometries because the parameter RaT is scaled
with the radius of the cylinder for the cylindrical geom-
etry while for the coaxial system the parameter is scaled
with the gap width. Therefore, for the same value of RaT
the cross section area will be different.

If one considers the system with the same heat gener-
ation and the same cross section, the appropriate value
of RaT in the system of coaxial cylinders will be much
nt of the coaxial cylinder system.



Fig. 8. Isotherms and streamlines for the cylinder when
RaT = 2 · 104.
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smaller (namely, be a factor of (1 + r)5/2). However, the
smaller value of RaT means the essentially smaller speed
of convection. It should be noted that for the same value
of RaT the speed of convection is much smaller in the
system of coaxial cylinders because of the presence of
the two eddies. The convection in the two-dimensional
case results in completely different properties of the sys-
tems with one cylinder and two coaxial cylinders, respec-
tively. In the former system the maximal temperature is
strongly reduced while in the coaxial cylinders system it
increases slightly. By an order of magnitude these
changes are comparable to a difference of the maximal
temperatures in the absence of convection.

In the present work, we did not consider the limiting
transition to the single cylinder by reducing the radius of
the small cylinder in the coaxial system. Such limiting
geometry is not very interesting from the practical point
of view, since it is impossible to keep the temperature
constant for a thin cylinder. From the theoretical point
of view this transition is not straightforward because
of the existence of a return eddy which covers more area
than that of the internal cylinder. Even in the case of
r = 0 the system differs from the cylinder due to the exis-
tence of the central point with the fixed temperature
even though the heat flow to the centre in this case ap-
proaches zero.

It should be noted that calculations presented in this
paper correspond to a two-dimensional model and to
the case of moderately high Rayleigh numbers. More-
over, heat generation is taken into account in this model
in a relatively simple way. However, even such a simple
model enables one to reveal the basic features of the sys-
tem. The structure of the convective currents changes
with the increasing of RaT, and therefore the analysis
of the convective flows should play an extremely impor-
tant role in the optimization of the geometry of a laser
system.
4. Conclusions

1. We have considered the problem of convection in a
system of two horizontal coaxial cylinders with inter-
nal heat generation and different temperatures at the
boundaries. The mathematical model which describes
the two-dimensional convection has been proposed
and the corresponding hydrodynamic parameters
have been calculated.

2. The critical surface RaT (Ra,r) which corresponds to
a generation of the known results for RaT = 0 has
been described.

3. It has been shown that depending on the parameters
of a problem there exist two different distributions of
two-dimensional currents—with one and two
vortices.

4. The convection in the horizontal cylinder with con-
stant heat generation has been investigated and the
values of the maximum temperature in the system
have been compared for the two systems with differ-
ent geometry. It is shown, that in the case of convec-
tion in the cylinder the maximal temperature
decreases with the increasing heat generation, while
in the system of coaxial cylinders the maximum tem-
perature increases if the radius of the internal cylin-
der is not too small.
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